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Summary

Football has an inherent problem in the scoring mechanism that defines the sport. Goals are
ultimately scarce, and as such do not paint the full picture in evaluating team performance.
Traditional metrics like shots and possession can be used to make inferences on match events,
but fail to fully capture the complex nature of the game. This project aimed to explore the use
of machine learning models in building upon the insights of commonly available metrics. This
involved an understanding for their capability in analysing the results of events in the past, in
real-time and in the future. The project achieved this through the development of a couple of

key models and modelling processes.

An probabilistic expected goals (xG) model was developed, to indicate the probability of a shot
resulting in a goal based on positional and contextual factors. The positive correlation between
the outputs of the model, and actual goals, despite their scarcity, identifies the benefits of using
xG as an evaluative measure. By quantifying the goal likelihood from shots, it becomes clearer
which team was likely to score more shots, rather than just who took the most shots. The
model ultimately introduces a measure of quality between shots, hidden by a traditional shot

count.

The effectiveness of this model was then evaluated in analysing previous matches using Monte
Carlo Simulation, enabled by the probabilistic nature of the xG values. Simulating all shots in
a game for both sides introduced a variance in the combinations of goals scored. Doing this
multiple times allowed for calculation of the average points per game, giving the expected
points value (xPts) based on the expected goals. This showed a significant, strong correlation

with the actual points, and finishing position, a team achieved.

These expected goal and expected points inputs were used to explore the effectiveness of
probabilistic metrics on match prediction models. The inclusion of averages and rolling
averages for these probabilistic input features had almost no impact on model performance.
This indicates that whilst effective in analysing previous performances, the probabilistic metrics
are no better at capturing contextual influences for future matches than the traditional metrics.

These are the complex dynamics that make match prediction so difficult in the first place.

Overall, the project emphasises the potential performance benefits from the application of
machine learning model outputs. Using the data produced to inform decision making is

invaluable in tuning the tactical approaches employed in matches.
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Chapter 1

Introduction and Background Research

1.1 Introduction

Football is renowned for its inherent unpredictability. Despite the multitude of variables
involved, match outcomes ultimately hinge on a single quantifiable metric - the number of goals
scored by each team. The vast and unpredictable nature of these factors at play mean that not
all shots are equal, and that the likelihood of a specific shot resulting in a goal is highly
nuanced. This has been combated thanks to developments in data capture technology within
the sport, helping to increase the possibility of data-informed footballing approaches [10].
Subsequently, new opportunities have arisen for the analysis of match dynamics and their
overarching influence on goals and goal-scoring opportunities. Enhanced understanding and
optimisation in this area is a problem that ultimately influences a wide-range of stakeholders.
Significantly, a 2018 international cross-market survey identified that approximately 43% of
people across the 18 international markets studied were 'interested’ or 'very interested’ in
football [20]. This clearly indicates that it is not only the employees of teams that have a vested

interest in the practical applications of football data, but also millions of supporters worldwide.

Furthermore, the financial stakes within the sport are substantial. In recent years, the FIFA
World Cup alone has brought in approximately 3 billion dollars in media rights income [21].
Domestically, Deloitte reported that the top 20 revenue generating clubs produced 10.5 billion
euros across the 2022/23 season [7]. The financial landscape highlights the overarching
disparity in wealth distribution, underlining the importance of using data-informed approaches
to help clubs gain a competitive edge, therein bridging the gap to the financial powerhouses. In
the modern world, the pursuit of understanding this competitive advantage extends beyond
club and media revenues to include an ever-growing bookmakers’ market, thriving as a
consequence of the increased availability of online betting opportunities [27]. The development
of sophisticated predictive models is also highly relevant in this area, offering valuable insights
to betting customers, whilst allowing bookmakers to optimise their odds and minimise financial
risk. Given the market-type, understanding the ethical implications is highly important. This
is discussed further in Appendiz A.3.

This project aims to validate the capability of xG focused machine learning models in building
upon the effectiveness of commonly existing metrics, both in understanding and forecasting
football matches. This will primarily be done through the development of a regression-style
model to predict the probabilities of shots resulting in goals, an Expected Goals (xG) model.
These models generate a probability based on their confidence in classifying a shot as belonging
to the positive class - a goal (1). This yields a probabilistic value indicating the likelihood of a
shot resulting in a goal, falling in the range 0 < G < 1. Refinement of these Expected Goals
models will then allow for further examination into the wider benefits of this style of
probabilistic metric. Specifically, this entails understanding their effectiveness in conducting

analysis on previous match results, as well as understanding their effect on the performance of
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models designed to predict the outcomes of future fixtures.

Developing a probabilistic approach to football analysis in this way will better capture the
nuances that influence goal-scoring and match outcomes, helping to reduce the noise derived
from the inherent unpredictability of the sport. In doing so, the models will help to improve
strategic planning and analysis, creating new opportunities for further data-informed decision

making processes.

1.2 Literature review

1.2.1 Traditional Approaches to Football Analytics

Historically, football analytics has been built on observational subjectivity and primitive, easy
to measure, quantitative values. Prior to the early 21st century, any data beyond scores,
lineups and attendances likely had to be captured independently [11|. Even then, insights
interpreted from these would not have the depth to fully capture a nuanced understanding of
the game. Baseline metrics like goals and assists fail to capture the interrelationship of players’
actions with one another on the pitch, obfuscating other potential key player impacts in
scenarios like defending or build-up play. Team-wide stats like possession percentages are not
only slightly more difficult to capture, but give no real indication as to what a team is doing
when they have the ball.

At this stage, critical judgement from those with experience of the game was an integral part of
football analysis. However, the intrinsic subjectivity, and susceptibility to biases based on past
allegiances, created inconsistency. Pundits were well aware of the role tactical theory played in
football matches, but the lack of data availability made it difficult to acknowledge the
mathematical principles at play [33]. There was no real foundation for them to support their

expert understanding with a concrete quantitative approach.

The emergence of modern data capture bodies, such as Opta (Statsperform), has accelerated
football’s data generation space, with modern wearable Electronic Performance Tracking
Systems (EPTS) also opening up new opportunities. EPTS thrive in dynamically capturing
aspects related player coordinates and velocity multiple times per second. However, the capture
of specific event data, such as the specifics pertaining to passes and shots, is still a manual
process. Subsequently, availability of this data is often restricted to only the most popular
competitions [38]. So whilst modern technological advancements have built on traditional
approaches to football analytics, poor data availability continues to hinder analytical process at

lower-levels of the game.

Regardless of lacking data availability at the time, Charles Reep stands out as a pioneering
example for the capability of quantitative football analysis. Beginning in 1953, Reep
independently recorded game sequence events for over 500 games [11]. This culminated in early
observations on goal likelihoods based on different game sequences, with correlation analysis
conducted between goals and match events [22]. It is clear that the potential insights that
could be gained with greater, more accurate, data collection processes, is huge. Reep and

Benjamin built on these original efforts to then lay the groundwork of a foundational
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probabilistic goals model.

1.2.2 Significance of Probabilistic Metrics

Reep and Benjamin categorised shots into probabilistic contours based on their spatial position
to goal. Notably, kicked shots inside the penalty area, inside the contour formed by extending
18 yard lines 45° from the goalpost, were scored in 0.189 instances on average. In contrast,
shots originating from inside the penalty area but outside the defined contour has a

substantially reduced average conversion rate at 0.014 [23].
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Figure 1.1: Reep & Benjamin’s scoring probability contours for kicked shots from open play and
from less than 1 yard from the nearest opponent [23].
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Insights like this into optimal shooting positions and the different overall yields of specific zones
and events changed the tactical landscape. Offering these newfound ideas ultimately
encouraged a pressing style of football, which has since seen great success in top leagues across
Europe [2]. It is evident that this data availability allows optimisation in developing a style of
play, but also has wider benefits in terms of player profiling and recruitment. Given the
concepts explored also underpin more sophisticated xG models, there is significant potential.
Present-day technology produces an abundance of high-granularity data points, paving the way
for new cutting-edge models to interpret the intricacies of the game in new ways, and with

greater precision, than before.

While the traditional analytical metrics are capable of identifying broader correlations, they fail
to fully explain the causality behind these relationships. Being able to understand this is key in
facilitating astute tactical insight. For example, there is a positive correlation between the
shots a team takes and the number of goals they score. However, interpretation of correlations
without considering wider footballing context can be unreliable [11]. Even though ten shots
from the halfway line and ten shots from the penalty spot could both yield the same number of
goals, we intuitively know they are highly unlikely to. This is ratified by Figure 1.1. In this
way, probabilistic values provide a more balanced representation as to the true likelihood of
events occurring, factoring in additional contextual constraints that may be underrepresented

by the traditional metrics. Using this to understand the areas of the pitch that a shot is most
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likely to yield a goal from is hugely beneficial. This is because it can be used to alter build-up
play and chance creation patterns to maximise the number of chances in these ’higher
probability’ areas. Furthermore, the models that produce these values can provide
transparency and additional domain knowledge into feature importances and variable
sensitivity. These capabilities are essential in providing improved clarity over the complex
interrelationship of variables and game scenarios, often hidden by traditional metrics. It is in
this way that modern machine learning algorithms can improve the specificity of xG values, by
breaking from the zonal structure first identified by Reep and Benjamin. The adoption of more
sophisticated machine learning methods, such as logistic regression and random forest models,
can account for the interrelationships of a wider number of variables on the probability of a

shot resulting in a goal. This allows for xG predictions to be made on a more individual level.

Brentford FC are a high-profile example for the effectiveness of these streamlined xG models in
shaping style and recruitment in the modern game. Statisticians applied a relative xG model to
predict player performance at Brentford, in spite of the current division they were playing in.
Using these probabilistic metrics to evaluate player performances has enabled shrewd
recruitment to support their promotion to the Premier League. This approach of targeting
undervalued players also created significant profit margins in the instance where players were
sold [34]. Embracing this probabilistic, data-driven approach enables teams to build upon key
tactical insights and consider opportunities for undervalued player acquisition. The all-round
combination of practical and financial benefits for this method of evaluating player performance
highlights the importance of leveraging machine learning capabilities for analytics in the

modern game.

1.2.3 Machine Learning Libraries

When it comes to the development of these machine learning models, Python has solidified
itself as the prevailing language of choice [25]. The range of available libraries, coupled with my

familiarity of the language, make it the ideal language to develop in.

Scikit-learn

Scikit-learn stands out as an library well-suited for the use-case of this project. Amongst other
functionality, it is capable of completing classification and regression tasks, allowing
experimentation with different algorithms with minimal code changes [12]. The efficiency in
being able to explore different modelling options is particularly appealing. Given it has become
one of the most popular machine learning libraries [12], it has a highly active pool of developers
providing a wealth of online support, and a well-documented API. Including my baseline
familiarity with development in the library, scikit-learn stands out as an excellent option to

enable sufficient development of diverse, complex models within the timeframe of the project.

PyTorch, Keras & TensorFlow

Despite the appeal of scikit-learn, it is important to consider the potential benefits of using
libraries that enable other strains of model development. Other such considerations here are

the use of deep-learning libraries, such as PyTorch, Keras and TensorFlow, to implement neural
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networks. However, these libraries, particularly TensorFlow, tend to have a steeper learning
curve [37]. Additionally, their increased complexity reduces the interpretability of model
outputs [16]. The capacity to understand model outputs is fundamental in acknowledging the
underlying influence of variables on predictions, as harnessing these can further elevate match
insights. For these reasons, neural network based approaches are deemed less suitable for the

expected goal and outcome models the project aims to deliver.

XGBoost & Statsmodels

Another open-source machine library worth considering is the XGBoost library. XGBoost here
stands for Faxtreme Gradient Boost. In the case of this project, is important to distinguish that
this has nothing to do with expected goals, which is also abbreviated to xG. Boosting seeks to
transform weak learners into strong learners through recursive error improvement [39]. Thus,
gradient boosting uses a model aggregation method to combine the results of weaker models in
order to enable better predictive capabilities [8]. This ensemble approach helps bring the
performance of decision trees in line with other modern machine learning methods. Whilst this
does make extreme gradient boosting an appealing model option to explore, it is possible to
implement this in scikit-learn. Scikit-learn also enables another form of ensembled decision tree
model, the random forest model. It is for this same reason that a library such as Statsmodels is
discounted. Whilst it has a suite of tools to enable regression model development, it primarily
focuses is on statistical and econometric analysis as opposed to predictive machine learning
[30]. As such, it makes more sense to develop models under the framework of a single library.
Doing so will ensure ease of development, as opposed to dealing with different variations in

implementation across multiple libraries.

Considerations for Model Selection

Considering all these factors, it is clear that scikit-learn provides the most suitable library for
the use-case of this project. The breadth of model options and documentation availability will
ensure efficient model development. In-turn, this will allow extensive research into the
strengths and weaknesses of different model types, ultimately enabling the development of a
better model. It’s also important to consider the other libraries that will be used to interact
with these models. Pandas and Numpy provide significant functionality for data analytics
procedures, enabling efficient processing even for large complex datasets. It is for these reasons
it is often used with analytical and visualisation libraries [17]|, making it highly suited for use in
this project. Whilst there is perhaps more variety in the visualisation libraries to use here,
prior experience with Matplotlib provides confidence in proceeding with this project. This
specifically pertains to experience in developing plots incorporating custom drawings, as will be
necessary for visualising data in the context of the football pitch. This combination of data
processing, visualisation and machine learning libraries creates a cohesive foundation to develop

the project upon.
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1.2.4 Machine Learning Algorithms

Having established the key libraries necessary for bringing the project together, it is also worth
specifically considering which kinds of underlying models should be used. As previously
identified, the use of an XGBoost model has strong performance capabilities. However, this
style of model can raise serious concerns over the transparency provided in the feature selection
process. This is due to the tendency to underestimate the importance of key features, whilst
overestimating the importance of irrelevant features |9]. Interpretable insights are invaluable in
further enhancing tactical insights based on the feature contributions. Subsequently, this
project will prioritise algorithms with a higher degree of interpretability, namely logistic

regression and random forest models.

Logistic Regression

Scikit-learn implements logistic regression as a linear model for classification, where a logistic
function is used to model the probabilities that describe the outcome of a given trial [5]. The
baseline binary classification approach makes it suitable for both an expected goals model
(no-goal vs goal), and a predictive outcome model (win vs not-win). Whilst match outcomes
are technically not binary (win, draw or loss), these can still be modelled using a multinomial
logistic regression. Adopting a logistic regression approach here is advantageous for model
transparency. Access to clear model coeficients allows for analysis into the extent to which
different variables alter model predictions. Interpreting the model in this was allows for the
abstraction of additional tactical insights. However, the aforementioned linear implementation
of the model may be insufficient in capturing the complexity of feature interactions,

particularly in the case of the expected goals model.

Random Forests

Given the complexity limitations of implementing a logistic regression model, it is worth
considering whether a random forest model is more capable for the problems in this project.
Like XGBoost, this is a tree-based ensembling approach. By averaging predictions across a
randomised set of decision trees, random forest models are able to reduce the susceptibility of
ordinary decision trees to overfit to the training data [5]. However, this can sometimes come at
the cost of increased model bias. For this reason, it will still be important to carefully tune
model hyperparameters using cross-validation techniques. Doing this will validate the
replicability of the results produced by the models [19]. Taking this approach for will provide
confidence that the models can maintain performance on unseen data samples, and will also be

taken for the tuning of any logistic regression models.

1.2.5 Evaluation Methods

Once satisfied with tuned model performance, the models need to be evaluated using

contextually appropriate evaluation metrics.
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Model Evaluation

Considering the project aims to ultimately produce two different strains of model, it is

important to consider the way in which they are evaluated. The predictive outcome model

seeks to identify whether a team will win, draw or lose. This classification approach lends itself

to metrics expressing the model’s performance in terms of true (T) or false (F) positives (P)

and negatives (N).

Metric Measure Formula
Accuracy | Total correct classifications TP+IN
TP+TN 4+ FP+ FN
.. .. . TP
Precision | Correctness of positive predictions made _—
TPT+PFP
Recall Proportion of actual positives found S
P e FNR Il
F1-Score | Harmonic mean of precision and recall 2 % TGCZ,SZ,OR X feca
Precision + Recall

Table 1.1: Overview of classification metrics [35].

As the predictive outcome model seeks to predict the correct result of games, accuracy is a key

metric for measuring model performance here. When one team wins, another team loses, giving

an inherent balance to match outcomes. For this reason, precision and recall are not perceived

as the primary predictive measure for this style of model. Nevertheless, using these to deepen

understanding on model strengths and shortcomings will be beneficial in the tuning process.

Given the probabilistic nature of an expected goals model, none of these classification metrics

are appropriate in measuring model performance.

Instead, a good way to evaluate model performance will be looking at the size of the errors

between the predicted values and the actual outcomes. This is where regression metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error

(RMSE) are popular [4].

Metric

Measure

Formula

Mean Absolute Error (MAE)

Average magnitude of errors between the
predicted and actual values

1 .
g Z:‘L:l Iyi - yi|

Mean Squared Error (MSE)

Average square of errors between the pre-
dicted and actual values

1 A
= 2y — 4i)°

Root Mean Squared Error (RMSE)

Average square of errors between the pre-
dicted and actual values, square rooted

NES IS

Table 1.2: Overview of regression metrics [4].

However, the expected goal value measures the probability of the positive class. Hence, it is

more appropriate to use a metric to measure the error between the probability of the positive

class and the actual value. This is where the Brier Score is appropriate, measuring the mean

squared error between the actual value and the predicted probability, as opposed to the

predicted regression value [28|.
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This will give a clearer indication of the error rate amongst the actual predicted probabilities
(the output of the expected goals model). However, this doesn’t make other regression metrics

redundant. Instead, they are more appropriate in supporting model calibration and refinement.

Evaluating Applied xG

Whilst having a well evaluated model is key to producing sensible xG values, it is also
appropriate to evaluate the suitability of their outputs in developing analytical insights. As
such, there is a need to affirm the correlation, and the statistical significance, of xG with

respect to actual goals.

The aim of the expected goals model is to provide greater statistical transparency over the
likelihood of a given shot resulting in goal. As such, there is a need to show a correlation exists
between these variables. This can be done using Pearson’s Correlation Coefficient. This
considers two variables and measures the strength to which they are linearly associated [31].

The p-value can then be used to confirm whether or not the result is statistically significant.

The probabilistic nature of xG values allows them to be utilised in the broader applications
aside from a shot-by-shot basis. One such method for this is Monte Carlo Simulations, which
conduct repeated random sampling of a probabilistic value [26]. This could be used to
randomly sample each shot within a game, simulating the outcome of all shots multiple times

for the same game.

600

500 -

N
o
S

w
=3
=]

Frequency

200 -

100 A

1 2 3
Goals Scored

Figure 1.2: Example Monte Carlo simulation (1000 sims) for 3 shots with xG values of 0.3, 0.05
and 0.8 respectively.

Figure 1.2 gives an baseline example for how Monte Carlo Simulation can be applied here.
Whilst the total expected goal value is 1.15, the team could score anywhere in the range of 0-3
goals. Simulating the goals for a team and their opponent allows for an average calculation of

the number of points expected to be scored from the game. This expected point (xPts) value
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creates an avenue for a longer-term assessment on the suitability of xG. Correlations between

xPts and actual points can then be explored, following a similar methodology to xG and actual

goals. Examining this is key in identifying the significance of xG in providing analytical

insights on more than just an individual shot basis.

1.3 Project Requirements

The requirements for the project were developed through thorough examination of existing

literature in the field of football analytics. Much of this includes the content explores in the

Literature Review (Section 1.2). Football’s low scoring nature by comparison to other popular

sports, necessitates a more nuanced way of evaluating chance quality [3]. A running total of

shots alone loses data dimensionality with regards to actual goal likelihood. As such, a machine

learning approach is required to provide greater clarity over shot-likelihood values, dependent

on other contextual factors. Given the success of current approaches to this, such as the

scenario discussed using Brentford FC, it’s also important to evaluate exactly why these are

beneficial. This includes their capability to improve analysis of past events and the prediction of

future events over traditional metrics. These considerations yielded the following requirements:

1. Develop a probabilistic "expected goals’ (xG) model to predict the likelihood of a shot

resulting in a goal-scoring event.

2. Analyse how the feature importances of an xG model can be used to alter tactical

game-approaches.

3. Evaluate the effectiveness of xG models for analysing previous matches.

4. Develop a baseline model to predict the outcome of upcoming matches.

5. Evaluate the extent to which xG model inputs can improve predictive outcome models.

1.4 Risk Analysis

In order to satisfy these requirements, there are some potential risks that need to be managed:

Risk

Mitigation

Reliability of the produced models is
largely dependent on the quality of
the obtained data

Data will be thoroughly preprocessed to identify any incom-
pleteness or data quality issues. Data will be collated from
across multiple different leagues, and numerous data sources
will be considered.

The combination of complex data
relationships and complex machine
learning implementations may lead
to poor model interpretability.

Specific machine learning algorithms have been chosen that
can provide a more suitable level of interpretability, to boost
tactical insights based on underlying model functionality.

Models may fit poorly to the
data, providing good performance
on training data, but poor adapta-
tion when it comes to unseen data.

Hyperparameters will be optimised using thorough cross-
validation tuning processes. Matches that occur after ini-
tial data collection will be accumulated separately, allowing
model evluation on an additional holdout set.

Table 1.3: Identification of risks and plans for mitigation.




Chapter 2

Methods

2.1 Project Management

Following this literary review period, the project was structured into key project phases, data
gathering, data exploration and model development, each of which were split into further
modular components where appropriate. Organising the project in this way allowed for
coherent dependency management between project phases. As such, this is the method used to
compartmentalise the project in the GitHub repository, which facilitated version control across
the development process. To further ensure a structured approach across project life cycle,
bi-weekly supervision meetings were organised. These were used to manage the workload across
the end-to-end project process and get regular feedback on code development phases,

supporting the project in an agile-style development approach.

2.2 Software Design

Given the focuses of this project on data science and machine learning processes, Jupyter
Notebooks offered a suitable python development environment [14]. The ability to split up code
workflows into text and cell based fragments helps to keep code clear and organised.
Additionally, some of the machine learning processes used in this project (e.g. hyperpameter
tuning) are likely to be computationally expensive. By splitting these off into separate code
cells, access to other code fragments can be maintained, without the repetition of intense tasks.

The key libraries used for development in these Jupyter notebooks can be seen in Table 2.1.

Library Use-case

Requests HTTP requests to facilitate data retrieval.

Pandas Provision of easy and efficient data manipulation.

Numpy Used in combination with Pandas. Also extensively used
when performing calculations for augmented spatial features.

Matplotlib Generate pitch graphics and general visualisations.

Scikit-learn Implementation of machine learning processes. Includes
train-test splitting, model implementation and quantitative
evaluation.

Table 2.1: Overview of the key libraries and their use-cases.

Figure 2.1 helps visualise how the software implementation aligns with the defined
requirements. Numerous data implementation steps ensure that the models will be built on
large quantities of data with the appropriate features. Development of appropriate models
ensures a quality resultant expected goals model (Requirement 1). With a suitable model in
place, confidence can be placed in the respective feature importance dynamics, to draw tactical
insights in optimising game-approaches (Requirement 2). The effectiveness of using expected

goals to analyse previous matches (Requirement 3) can be approached using quantitative

10
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Figure 2.1: Planned project data flow diagram.

correlation analysis. Supporting this with Monte Carlo simulation shifts the evaluative lens to
a broader context of entire matches and seasons. Using the initial data, a baseline predictive
outcome model can be developed (Requirement 4). Here, there is then an opportunity to apply
the expected goals model as inputs for the predictive outcome model, such as in the form of
averages and rolling averages. At this stage it is suitable to evaluate the effectiveness of xG
values for forecasting future events, and building on the baseline predictive outcome model
(Requirement 5). With an end-to-end understanding of the processes required to meet the

requirements in place, data was now needed in order to kick-start software development.

2.3 Data Gathering

2.3.1 Data Sources

Detailed football data is relatively hard to come by, specifically when it comes to shot data.
Datasets like those collected from the publicly available Fantasy Premier League API [1] do
provide some overarching seasonal data. However, these are not granular enough to build
anything close to an expected goals model, and do not provide data on leagues from a breadth
of different countries. As such, it is important to consider data accessible via other methods,

such as web scraping.

Sofascore

Sofascore is a site used for live football scores, and provides a host of match data to accomplish
this [32]. Further examination of the site identified an API feeding match data, with
substantial overarching season information. It also contained highly specific shot data across a

number of leagues, capturing a range of contextual features. Whilst the available feature-set
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from the API made it an appealing source of information for this project, there were a few
concerns. Firstly, navigation between endpoints was highly difficult. There was no specific
structure or naming convention, meaning UIDs had to be identified for each match. The API
offered no convenient way of achieving this. Given the low scoring nature of the sport,
maximising the data points available was a key focus. Thus, using this approach to ensure a
significant quantity of data capture was deemed infeasible. Furthermore, the data source was
not completely consistent, with data availability appearing to evolve in more recent years. This

also raised concerns over providing a suitable volume of data for the project.

Understat

Subsequently, Understat was considered as a source for information for the project. Understat
also provides match across the top leagues in England, France, Spain, Italy and Germany [36].
Some research into using Understat as a data source identified an easy method for extracting
data as a JSON object from the site’s underlying Javascript [6]. Given Understat’s structured
URL structure, this made navigation between match data sources incredibly simple. Whilst the
level of contextual information was not quite as extensive as Sofascore’s data, this made over 9
years of match information across the top 5 FEuropean leagues readily available. The
combination of data volume, ease of access and feature availability made Understat the most

suitable data source to pursue for project development.

2.3.2 Data Retrieval

A function was designed to follow the data retrieval process outlined in the previous
sub-section. Using the structured URL, the function iteratively searched through each of the 10
available years of fixtures (including the present season for each of the leagues). Here, URLSs for
all of the fixtures in that league and season were dumped into an array. Subsequently, the
function was able to go through each of the fixtures one-by-one, converting the data from a
JSON object, and storing it in a CSV file specific to that league. Throttling, i.e. limiting the
rate of requests being made to the site, was implemented in order minimise the risk of being
blocked or overloading the server [15]. Given data was initially pulled in January 2024, getting
data all the way back to 2014, this was a lengthy process. However, eventually this produced a
dataset of over 17,300 matches and 434,000 shots. This same data retrieval process was used
to obtain a smaller sample of data in the matches preceding this period from February to April.
These additional data points ultimately made up the holdout set, to allow for unseen model

evaluation, as was explored in the literature review.

2.4 Data Exploration

Figure 2.2 shows the distribution of match variables, much of which conforms with what is
expected. Neither home nor away goals identify any major outliers in their distributions. Ligue
1 (France) and the Bundesliga (Germany) appear to contain a smaller number of games, but
this is also expected, as their leagues contain fewer teams than the rest. Seasonal distribution
of matches remains consistent with our expectations. All seasons contain the same number of

games, excluding the current season (which is in progress), and the 2019-20 season. This season
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Figure 2.2: Distribution of variables across the matches dataset.

saw an understandable drop in matches, due to the cancellation of matches during the
Covid-19 pandemic. The distribution of match kick-off times appears to raise a few questions.
Exploring values with a kick-off time between 00:00 and 02:00 provides some explanation
surrounding this. Matches with these kick-off times are real matches with existent statistics.
However, they did not kick-off at midnight. As such, this appears to be some sort of indication
of an unknown or missing match kick-off time. This is important to note if kick-off time makes
up a part of the predictive outcome modelling, as these records will be removed. Further
manual examination identified some discrepancies in the timings between countries. It did not
always appear to be clear, nor necessarily consistent, which timezone these are registered in. As
such, it may be best to disregard this when modelling predictive outcomes. Given the shot data
concerns spatial values, these can be visualised within the context of a football pitch, using a

pitch drawing approach inspired by FC Python [24].

Initial attempts to plot this appeared to show an empty pitch plot. However, examination of
the shot values identified normalised values, with « and y values lying between 0 and 1. Given
a pitch is rectangular, it was clear these were normalised values. Whilst not an original
consideration, this is actually an advantageous feature of this dataset, as regulation pitch sizes
can differ [13|. However, as pitch features must remain proportional with respect to pitch size,
all shots can be plotted proportionally in spite of this. As such, the pitch was drawn using
dimensions akin to Wembley Stadium (105 x 70m), and shot values were scaled to reflect this.

Plotting all shots in the dataset produced the shotmap seen in Figure 2.5.

Given the sheer quantity of shots plotted on the visualisation, the data is incredibly clustered,
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Figure 2.3: Visualising the location of all shots in the shot dataset.

particularly in the vicinity of the opposition penalty area. This follows the expected
distribution. However, a shot hotspot appears in a team’s own penalty area. Initially, it was
presumed that these were mishit goal-kicks that turned into shots, but they did not appear
distributed as expected for that scenario. Further exploration identified that the dataset
includes own-goals as a shot-based scenario, hence the clustering in this area. By mapping all
shot results into three categories: no-goal (0), goal (1) and own-goal (-1), managing shots in
the dataset became far simpler, and own goals could be removed. Figure 2./ visualises the

distribution of these.

Direction of attack ~ ———Jp»

Figure 2.4: A shotmap for shots (excluding own goals) in the dataset. Non-goals are encoded in
blue; goals are encoded in orange.

The shot dataset also contains other key contextual fields that support the coordinate
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information. The possible values for the most relevant fields are listed in Table 2.2.

Feature Feature Description Possible Values
Name
situation | Indicates the scenario that the shot originates | OpenPlay, FromCorner,
from SetPiece, DirectFreeKick,
Penalty

shot_type | Indicates the part of the body used for the shot | RightFoot, LeftFoot,
Head, OtherBodyPart

last_action| Indicates the last match playing action before | 41 possible values (including
the shot occured. null)

Table 2.2: Possible values for contextual shot fields.

Whilst training a model using all contextual values would be good, the last_action values
created significant difficulties. The range of values meant that many actions were
underrepresented. 12 of the 40 actions appeared in less than 20 shot scenarios. Additionally,
actions were sometimes ambiguous, appearing to have overlap between values. Finally, many
shot values had a value of null for this feature. Whilst this could be presumed to be no prior
action, the range of possible actions makes this improbable. Further exploration confirmed
these were missing values. Subsequently, it was decided this should not be used as a feature for

model development.

2.4.1 Data Preprocessing

Having mapped goals into the three categories discussed, own goals were fully removed from
the dataset. Their scarcity, coupled with their high inherent unpredictability, meant they did
not fit within the scope of this project. Additional exploration was conducted to identify any
duplicate shot values, although none were discovered. Finally, any rows containing null values
for any of the variables were disregarded. All of the null values appeared in columns that had
already been disregarded, such as the last_action column, or in columns that would not be
suitable for building a predictive model, such as assisting_ player. This is because data is
inherently too sparse to tune predictive models based on specific shot takers and assist makers.
Finally, x and y coordinates were scaled based on the pitch dimensions previously outlined.

This would ease the process of engineering additional spatial features.

The preprocessing stage also required consideration for dealing with anomalous values. Given
the nature of the game, unlikely shot outcomes do happen, so initially it was decided these
should be factored into the probabilities provided. Nonetheless, some experimentation was
conducted with regards to model performance by removing different levels of anomalous values.
The existence of coordinates in a 2-dimensional space allowed for identification for the other
100 closest shots by euclidean distance. Once identified, and their results calculated, if the
shot’s outcome was only seen in < n neighbours, it could be removed. This necessitated the use
of a holdout set.
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2.4.2 Feature Engineering

Existence of shots in this 2-dimensional space where also beneficial in allowing the
augmentation of additional features. This includes the distance from specific parts of the pitch,
such as the nearest touchline, the goal itself, and the width from the centre of the goal. This
was simply performed by calculating the distance of x and y coordinates from the fixed pitch
boundaries. Additionally, knowing the coordinates for the goalposts, it is possible to
trigonometrically calculate the angle between a shot and the goalposts. This indicates the
visibility of a shot to goal. Using this should be beneficial to model performance, as the greater
the site of goal from a shooting location, the greater the chance of the shot being on target [29].

Figure 2.5 indicates how this can be done.

z (= 7.32m)

Figure 2.5: Understanding the calculation of the shot angle.

Values for z and y can be simply calculated using Pythagoras’ Theorem (a2 + b? = ¢?), whilst 2

(the goal width) remains constant at 7.32m. Based on the law of cosines [18§]:

2% = 2% + y* — 2wy cos(0)

2 2 2
x —z
cos(6) = Y =2
2zy
Given all values for x, y, and z are known, it is possible to solve the equation, and take the
inverse cosine to calculate the angle in radians. Multiplying by 1%0 gives the value in degrees.

1
0 = arccos(cos(0)) - —80
T

Finally, contextual features (situation and shot_type) needed to be engineered into binary
values, as logistic regression modelling is unable to deal with continuous features. Pandas
provides an easy way to perform this on dataframes, with the pd.get dummies() function.

Here, 1 indicates a true value (e.g. situation_OpenPlay), and 0 a false value.

This feature engineering process was far simpler for the match data used in the Monte Carlo
Simulation. As the Monte Carlo simulations required xG model outputs, a model was chosen
and applied to the shots in the dataset. All shots in a game could then be linked together using
the match_id. Running 100 simulations each game could then be done, capturing the variance

in shot outcomes, and producing an expected points figure.

For the predictive outcome models, pandas could be used to calculate simple averages and (6
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game) rolling averages for a team and their opponent in a certain season. This included match
expected goal calculations based on the developed xG model, and expected points values from
the Monte Carlo simulation. Rolling averages were not rolled over at the beginning of a new
season, due to the impact of promotion, relegation and transfer windows. As such, the first 6
games for each team in a season needed to be removed from the dataset, as their rolling
average values were null. Following these preprocessing steps, all datasets were fully prepared

to begin model training.

2.5 Model Training

As previously discussed, based on the literature review, both strains of model were
implemented using scikit-learn. In order to tune hyperparameters, models used GridSearhCV
to perform k-fold cross-validation. This included development of a custom hyperparameter
tuning process for the xG model, centering optimisation around the Brier score. This did
require use of the joblib library to enable parallel implementation to reduce the computational

expense, which was an interesting challenge in itself.

2.5.1 Expected Goals (xG) Models

The expected goals model was developed using the preprocessed shot dataset. As discussed in
the literature review, there was a desire for a degree of interpretability, but also wanting to
ensure sufficient performance. As such, both logistic regression and random forest models were
developed. Both would be suitable for predicting goal probabilities, allowing a quantitative
comparison of the pros and cons of each model. The features ultimately used to train the
model were: X, Y, avg_distance_to_goal, angle_of_shot, width_from_goal_centre
and proximity_to_touchline for the basic coordinate based model. The extended model,

including extra context, also included the flattened columns for situation and shot_type.

2.5.2 Predictive Outcome Models

The initial predictive outcome model was developed using contextual match data information,
with total averages and (6 game) rolling averages for performance. This process was used for
goals, shots, expected goals, points and expected points, both for and against. Opposition stats
for these same parameters were also included. Managing the features in this way allowed for a
representation of the average, and form-based, attacking and defensive performance of the
teams. This allowed for binomial logistic regression classification, such as 'win’ vs 'not-win’,
and multinomial logistic regression, such as 'win’, ’draw’ or ’loss’. A random forest model was
also developed as a point of comparison. Ultimately, the features used in the baseline model
were: goals, goals_conceded, shots_taken, shots_conceded and points. The model
including probabilistic features also included shots_taken_xG, shots_conceded_xG and xPts.
Each of these then had a variant prefaced with opponent_ to indicate oppositions teams
performance in these areas. This could finally then be used to produce a difference column
for each of these variables, indicating the magnitude in performance difference for a team with

respect to the feature.
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2.6 Model Evaluation

The evaluation of the expected goals models and predictive outcome models built upon the
evaluation approaches explored in great detail in the literature review. Due to the differing

outputs of the model, the metrics used to optimise and assess both types of models differed.

2.6.1 Expected Goals (xG) Models

The xG models required a regression-based approach, meaning performance metrics needed to
focus on error sizes as opposed to classification performance. This necessitates the use of
metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) for calibration, and the Brier score for ultimate evaluation. The goal of
the model is to produce a probability, and the Brier score considers the difference between the
probability itself and the actual outcome. Using the Brier score quantifies the average squared
deviation between predicted values and actual outcomes, where predicted xG values fall in the
range 0 < zG < 1, and a shot has a binary outcome of 0 (missed) or 1 (scored). Hence, the
lower the Brier score, the better the predictive accuracy of the model. In terms of evaluating
the longer-term analytical capabilities of the final xG model, outputs will be used to perform
Monte Carlo simulation on previous games. This will allow for a comparison of the estimated
points probabilities (xPts) based on these simulations and team’s actual points and league
standing. The statistical significance, and correlation coefficient for the relationship between
expected points and points (as well as xG and goals) can be also be affirmed using Pearson’s
Correlation Coefficient. Exploring the correlative performance of the model across an entire
season enables a more nuanced understanding for the suitability of xG in conducting analysis
on previous events. Hence, evaluation of the expected goals model is not limited to the
suitability of the model itself, but also its wider applications. This is relevant for both past

analysis, as well as predictive capabilities.

2.6.2 Predictive Outcome Models

In contrast to xG, the predictive outcome models require a classification-based approach, where
the objective is to correctly classify the result of a game into an appropriate category. This
necessitates a focus traditional classification metrics, such as accuracy, precision and recall.
The primary result of any match is the number of points earned as a result of a team winning,
drawing or losing. As such, developing a model that priorities accurate classification provides a
more suitable predictive objective than attempting specific scoreline forecasting. Development
of a predictive model with and without probabilistic inputs will enable a quantitative
comparison for the benefits or drawbacks of their use in predictive models. As a result of the
game’s low-scoring nature, it is also imperative to consider the classification approach used.
Models can be developed to predicts whether a team wins, draws or loses, but may be more
successful in predicting whether a team wins or does not win (including draws). As such, it is

sensible to explore the influence of probabilistic inputs for each of the classification approaches.
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Results

3.1 Software Implementation & Testing

The code implementations were ultimately were split into a number of different Jupyter
Notebook files, enhancing the overall maintainability of the code-base. Within these files, many
elements made use of a modular design approach to increase code reusability. This was
particularly effective in the development of functions for the xG models’ custom
hyperparameter tuning, performance comparisons on the evaluation set, Monte Carlo

simulations and the preprocessing steps of the predictive outcomes models.

A number of approaches were taken to testing individual functions, model outputs and overall
applicability. Mathematical processes used as a part of feature augmentation were tested in a
unit fashion, including methods such as the calculation of shot angle. Testing values in this
fashion ensured that augmented features were consistently correct across all data points.
Additionally, integration testing explored the interconnection of the different stages of model
development. This ensured that each element of the model pipeline fitted together, producing

results roughly aligning with pre-conceived expectations.

In terms of model testing, holdout data was used to allow for an equal comparison of all models.
Whilst this did provide a level playing field for model comparison, it also ratified the results for
models with no ’anomalies’ removed. All of these models saw at most £0.01 fluctuation in Brier
scores between test and holdout set performance, indicating the models were well fitted for
unseen data generalisation. The outputs of the expected goals model could also be visualised as
a pitch heatmap, allowing for qualitative evaluation. The combination of quantitative and

qualitative evaluation processes was key in understanding differences between model outputs.

The Monte Carlo simulations acted as the foundation for previous result analysis, through
expected points modelling, and were also tested for robustness. This involved running the
entire simulation process multiple times, to ensure there was no great fluctuation in average
deviations. Across this repeated process, the average deviation between the expected league
position and actual league position only fluctuated by 4+0.15 between simulations. This was
based on 294 different 34-38 game seasons per simulation. The lack of variance between

simulations instilled confidence in the robustness of this simulation approach.

3.2 Expected Goals (xG) Model Performance

3.2.1 Initial Model Performance

The performance metrics (Table 3.1) identify minimal deviation in performance between
differing xG model types for the 'basic’ and ’extended’ variations. The marginal improvement
seen in the extended models highlight the role that wider shot context plays in reducing the

error of predictive probabilities. For example, headers have significantly reduced probabilities

19
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Basic (coordinate-based) Models

Model Brier Score MAE of xG Value RMSE of xG Value
Logistic Regression 0.080 0.159
Random Forest 0.079 0.158

Extended (situation and shot type context) Models
Logistic Regression 0.077 0.153
Random Forest 0.076 0.153

20

Table 3.1: Performance metrics (3sf) for basic and extended xG models (lower values are better).

over right or left footed shots, due to the difficulty of generating enough power to beat the

goalkeeper. However, this is actually also encouraging in highlighting the benefits of using a

basic model. Whilst offering slightly sub-optimal performance, it requires less contextual match

data, which is often scarce in data sources. This likely makes it a more accessible model for

games with less publicly available data, such as lower-division games.
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Figure 3.1: Extended logistic regression - A heatmap indicating goal probabilities for right

footed shots from open play.

For applications inside this project however, an optimal xG model is desired, and so a variation

of the extended model will be used to maximise performance. The hyperparameters of the

tuned extended models are shown in Table 3.2

Model (Extended) | Hyperparameters

Logistic Regression | { >C’: 10, ’fit_intercept’: True, ’solver’: ’saga’ }
Random Forest { ’max_depth’: 10, ’min_samples_leaf’:
'min_samples_split’: 10, ’n_estimators’: 300 }

Table 3.2: Hyperparameters for extended models based on Brier score based tuning.

Given the possible combinations of situations and shot types for these extended models, it is
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Figure 3.2: Extended Random Forest - A heatmap indicating goal probabilities for right
footed shots from open play.

not possible to visualise all xG heatmaps. Figures 3.1 & 3.2 plot an example combination,
where shot type is 'Right Foot’ and situation is ’Open Play’. Despite their similarities in terms
of quantitative performance, qualitative evaluation of their heatmaps show significant
underlying differences between the models. The decrease in xG probabilities for the logistic
regression model follows a smooth concentric circle around the goal mouth. Meanwhile, the
random forest displayed significant hotspots of higher xG, particularly in wing-related areas,
appearing to be areas of overfitting. Whilst not fully conclusive, some investigation into the
dataset indicates this may be due to the way shot values are captured. Shots in close proximity
to either touchline are infrequent. However, a mis-hit cross or a free kick that results in a goal
would count as a shot from this area. Had these not resulted in goals, it is unlikely they
would’ve been registered as shots. Subsequently, a high proportion of ’shots’ from this area are
scored, and this is contributing to the overfitting seen within the random forest model. It is
probable that this is superficially boosting the Brier score of the random forest. As such,

consideration of anomalous values seemed a potential counteractive measure to this.

Exploration for anomalous value removal was done by examining the results of the nearest n
neighbouring shots, and removing shots that fell below the similarity threshold. This was done
for values of n = 2,5 & 8, focusing primarily on tackling the overfitting of the random forest
model. On the test set data, these models produced significantly improved Brier scores, as low
as 0.124. However, as this data excluded anomalous shots, this is expected. For equal

comparison, these models needed to be compared with the original models on a holdout set.

3.2.2 Holdout Set Performance

The holdout set used shot data from matches from the 5 leagues previously discussed, whose
games occurred between 30/01/24 - 09/04/24. This gives all models an equal dataset to be

compared against, with no potentially anomalous results removed. Metrical performance for
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Extended (additional context) Models

Model Neighbors Threshold Brier Score MAE of xG Value RMSE of xG Value
Logistic Regression - 0.078 0.160 0.280
Random Forest - 0.078 0.160 0.280
Random Forest 2 0.078 0.160 0.280
Random Forest 5 0.078 0.153 0.280
Random Forest 8 0.078 0.145 0.280

Table 3.3: Extended model performance metrics (3sf) on holdout set (lower is better).

these models on the holdout set is shown in Table 3.3. The performance here is once again
incredibly similar across the board. Whilst the 'neighbours’ models did make smaller errors on
average, maintenance of (.78 in the Brier score implies a greater distribution when it comes to
significant errors. Inspection of their heatmaps does indicate marginal, but imperfect,
improvements in the identified wing-hotspots. For this reason, despite offering lower absolute
error values on average, concerns over error distribution between points in these random forest
models mean they will not be considered. A possible ensembling of models was also explored,
but this yielded no performance benefit, at the cost of extra computation time. Hence, this was

also dismissed.

3.2.3 Model Selection

Given the similarities in performance for the extended logistic regression and random forest
models (with no neighbours removed) the decision was taken to use the logistic regression
model for further exploration. Concerns over the overfitting of the random forest model to
discrepancies in the method of data capture created uncertainty. It cannot be certain it would
generalise as appropriately to other unseen data from a different source. Meanwhile, the
combination of quantitative and qualitative evaluation gives confidence that the logistic
regression model is the most well-rounded model across all areas of the pitch. Additionally, it
offers improved interpretability over the random forest models. As such, making sense of

feature importances will make it easier to uncover additional tactical insights.

Feature Importances

The feature importance values from the model (seen in Figure 3.3) indicate the change in the
log-odds of a shot ending in a goal from a one-unit increase to the feature. The model places a
vast emphasis on working shots into close-range, central positions. The feature importances of
angle_of_shot (0.451) and avg_distance_to_goal (-1.010) exemplify this. This indicates
that greater shot angles improve the odds of a goal, but greater distances to goal drastically
hinder goalscoring likelihood. Tactically, this indicates the need for teams to focus on patient
build-up play, creating an opening in these dangerous spaces. Moreover,
situation_DirectFreeKick had the second strongest positive feature importance at 0.193.
The potential gains here highlight the importance of exploring proper free-kick routines as a
part of training. This can be considered in tandem with shot_type_Head which had the second

highest negative feature importance (-0.288). Based on these considerations, it is likely to be
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Figure 3.3: Comparion of feature importance values for the extended logistic regression xG
model.

beneficial to focus free-kick routines around shooting opportunities, as opposed to crossing into
the box for a headed opportunity. It is also worth noting, situation_penalty events were
ultimately removed from the dataset. Expected goal values for this were calculated
independently based on over 5400 penalties, producing an xG value of 0.78. The circumstances
surrounding these mean they hugely correlated with goals. Understanding the impact of feature
dynamics on goal likelihood is useful, but it’s also important to understand the overarching

correlation between shots and xG.

The Pearson Correlation Coefficient provides a quantitative evaluation over the correlation
between xG and goals. The correlation coefficient between the two was found to be 0.370. The
null hypothesis states that there is no correlation between the two, with a p-value threshold set
at 0.05. The p-value for this correlation coefficient was found to be 0.0. As 0.0 < 0.05, the null
hypothesis can be rejected. As such, the moderately positive correlation between xG and goals
is statistically significant. Given the scarcity of goals that undermines football, this highlights
the value of xG in quantifying goalscoring opportunities. This creates a solid foundation to

examine the capability of xG in analysing the results of previous games.

3.3 Monte Carlo Simulation for Previous Result Analysis

Given xG is a probabilistic outcome, there is always going to be variance in actual shot
outcomes. Sometimes unlikely shots are scored, and sometimes likely shots are missed. Monte
Carlo simulation provides an avenue to simulate all shot outcomes in a game. This accumulates
to a simulated result. Simulated many times, 100 for this scenario, match outcomes should

have a distribution converging to xG sums for the game. Doing this provides a total for the
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number of wins (worth 3 points), draws (worth 1 point) and losses (worth 0 points) in the 100

simulated scenarios. From this, it is possible to calculate an ’expected points’ (xPts) value:

(3 x Number of wins) + (1 x Number of draws)

E ted Points =
xpected Points 100
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Figure 3.4: A histogram showing the distribution of the differences between actual points and
xPts values.

For each season and league, a team’s xPts values can be summed, to give an expected league
table. This is a league table that quantifies teams in terms of the chances they created,
allowing cross-team comparison for a full season. This works based entirely on the probabilistic
xG values. Given the computational expensiveness of running the simulations, the project used
3 seasons of data (2016-17, 2018-19 and 2021-22) for all 5 leagues. This gave 15 seasons of
expected point data to analyse, covering 294 different teams’ seasons. Figure 3.4 shows the

distribution for the deviation of xPts values from points values for the 294 cases.

The distribution of point differences represents a roughly Gaussian distribution. Given the
position of the central tendency, it is clear that, on average, the xPts a team accumulates based
on the xG match chances closely reflects the actual points they score. This central tendency is
also positive in reinforcing the stability of the model, with deviations not drastically skewed in
either the positive or the negative direction. The Pearson Correlation Coefficient can once
again be used to corroborate this. The correlation between points and xPts has a coefficient of
0.880. Given the infinitesimally small p-value (7.60 x 10~?%), the null hypothesis that there is
no correlation between points and xPts can be rejected. Not only is this statistically significant,
but the correlation is overwhelmingly positive. This indicates that the use of xG in analysing
the performance of teams over a season is hugely reflective of actual results. It effectively
captures the long-term quality of teams, the chances they create and their defensive
capabilities. This enables quantitative performance-based analysis over result-based analysis to
be conducted on an individual team-by-team basis. Correlative insights on these can pave the

way for justification and implementation of tactical modifications.
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Not only are xPts reflective on an individual team basis, but they are also hugely reflective of a
team’s performance comparative to the other teams in their division. The absolute average
value of the deviation between a team’s actual finishing position, and their finishing position in
a table based only on xPts, was 2.44 positions. This is inclusive of a minority of extreme
outliers. The quantification of overall xPts prediction effectiveness in predicting league

positions is seen in Table 3.4.

Difference between Actual & Expected Finishing Position | Cumulative Proportion
+0 15.7%
+1 72.5%
+2 80.3%
+3 87.1%

Table 3.4: The cumulative proportion of finishing positions covered by different ranges of actual
vs expected finishing position differences. Expected finishing positions are calculated based on
each league and season’s xPts table.

This effectively underlines the long-run comparative capabilities of using expected goals to
develop a simulated league table. 213 of the 294 seasonal cases were within one position of
their actual league position in the expected points table. This rose to 236 of the 294 cases
within 2 places of their actual league position. The strength of the correlation between actual
and expected finishing position (0.831) and significance of the correlation (p = 3.10 x 10~7°)
highlight its capability for long-term past performance analysis. With this, quantification of the
respective over /under-performance of teams allows for nuanced comparative performance, even
across different leagues and seasons. Understanding deviations here helps to portray the
overarching sustainability of a team’s performance. Observing the trends in this space can also
allow for the identification of performance influencing factors for a single team. This might
include factors such as coaching and player quality. All in all, the use of a probabilistic goals
model as the foundation for analysing past game performance is hugely beneficial. The
provision of the expected points framework is robust, creating new opportunities for tactical,

data-informed, decision making approaches, on the basis of previous performance patterns.

3.4 Predictive Outcome Modelling

3.4.1 Baseline Metric-based Model

The predictive outcome modelling aimed to explore the predictive capabilities of past
probabilistic performance (e.g. xG and xPts) in improving models designed to predict match
outcomes. Given a model can only use information known prior to the game, the feature-space
was primarily made up of averages and (6 game) rolling averages. The features are shown in
Table 3.5.

As discussed in the literature review, due to this classification style of approach, the models
used traditional classification metrics, including accuracy, precision and recall. It was
anticipated that a logistic regression model would again be pursued. In the end, random forest
models were also developed as a point of performance reference against the logistic regression

models when using probabilistic inputs (Section 3.4.2).
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Features

Targets

team_goals_avg
shots_taken_avg
points_avg
team_conceded_avg_6
shots_conceded_avg_6
opponent_goals_avg

opponent_points_avg
opponent_conceded_avg_6

goals_avg_diff
shots_taken_avg_diff
points_avg_diff
conceded_avg_diff_6

is_home

opponent_shots_taken_avg

opponent_shots_conceded_avg_6

shots_conceded_avg_diff_6

team_conceded_avg
shots_conceded_avg
team_goals_avg_6
shots_taken_avg_6
points_avg_6
opponent_conceded_avg
opponent_shots_conceded_avg
opponent_goals_avg_6
opponent_shots_taken_avg_6
opponent_points_avg_6
conceded_avg_diff
shots_conceded_avg_diff
goals_avg_diff_6
shots_taken_avg_diff_6
points_avg_diff 6

is_away

win_notwin
or
win_draw_loss

Table 3.5: The features and possible target variables for the baseline predictive model.

Win-Draw-Loss Classification
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Figure 3.5: Confusion matrix for the baseline W-D-L predictive model.

Table 3.6 shows the classification metrics for the win-draw-loss classification approach using

this baseline model. The model scores approximately 0.67 across all of accuracy, precision and

recall. This indicates a relative level of success in classification approach, with double the

performance of randomly guessing. Subsequently, the similarity in values indicates a balanced

performance in the classification of true and false positives and negatives. However,

identification of the confusion matrix (Figure 3.5) can allow for the identification of

performance with respect of specific classes.

The confusion matrix paints a clearer picture of the relative strengths and weaknesses of the
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Baseline Win-Draw-Loss Predictive Model
Accuracy Precision Recall F1 Score
0.6776 0.6645 0.6776 0.6584

Table 3.6: Classification metrics for the baseline Win-Draw-Loss predictive model.

model. It performs well at correctly predicting the outcomes of wins and losses, but struggles
at correctly predicting draws. Only 31% of draws were predicted correctly, vs 82% and 78% of
losses and wins respectively. This is again the product of the scarcity of goals in the game,
where margins between drawing a game are often incredibly tight. As such, a model focused

around predicting 'win’ vs 'not-win’ may provide better classification accuracy.

Win vs Not-Win Classification

Baseline Win vs Not-Win Predictive Model
Accuracy Precision Recall F1 Score

0.791 0.790 0.791 0.787

Table 3.7: Classification metrics for the baseline "Win vs Not-Win’ predictive model.

Table 3.7 indicates the performance increase of a binary classification approach. The model is
able to correctly classify more correct cases (accuracy). It also shows improvement in the
proportion of true wins out of predicted wins (precision) and actual wins (recall). Whilst model
performance does improve, it loses granularity with regards to the inability to distinguish
between draws and losses as match outcomes. As such, despite improved performance, it is not
appropriate if prediction of all 3 possible match outcomes is a necessity. As such, it is

important to explore whether the probabilistic inputs can improve both strains of model.

3.4.2 Model Including Probabilistic Inputs

Additional Probabilistic Input Features
shots_taken_xG_avg shots_conceded_xG_avg
xPts_avg shots_taken_xG_avg_6
shots_conceded_xG_avg_6 xPts_avg_6
opponent_shots_taken_xG_avg opponent_shots_conceded_xG_avg
opponent_xPts_avg opponent_shots_taken_xG_avg_6
opponent_shots_conceded_xG_avg_6 opponent_xPts_avg_6
shots_taken_xG_avg_diff shots_conceded_xG_avg_diff
xPts_avg_diff shots_taken_xG_avg_diff_6
shots_conceded_xG_avg_diff_6 xPts_avg_diff_6

Table 3.8: Additional probabilistic features added to the baseline model.

Table 3.8 indicates the additional features used to develop the models based on the availability
of probabilistic input features. Respective model performance is shown in Table 3.9.

This helps to observe that opting for a logistic regression model was a sound approach, as
differences in performance were not substantial between model types. However, more
interestingly, the classification metrics highlight a lack of classification performance, and

sometimes a regression in performance, across the board following the introduction of these
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Performance Metrics for Models Including Probabilistic Features

Model Accuracy Precision Recall F1 Score
Logistic Regression (Win-Draw-Loss) 0.674 0.661 0.674 0.656
Random Forest (Win-Draw-Loss) 0.645 0.612 0.645 0.600
Logistic Regression (Win vs Not Win) 0.784 0.782 0.784 0.781
Random Forest (Win vs Not Win) 0.788 0.785 0.788 0.784

Table 3.9: Performance metrics (3sf) for models using probabilistic features.

probabilistic inputs. Given the success of using probabilistic values in conducting previous

game analysis, this came as a surprise. The feature importances of the binary logistic

regression (Figure 3.0) classifier provides an insight into the reasoning behind this.

opponent_points_avg_6 -
shots_taken_xG_avg_6 -
team_goals_avg
opponent_shots_conceded_avg_6
opponent_shots_taken_avg
conceded_avg_diff 6
shots_taken_avg q
shots_taken_xG_avg_diff_6
opponent_goals_avg_6
opponent_goals_avg 1
team_goals_avg_6
opponent_xPts_avg_6 -
goals_avg_diff

xPts_avg_diff 4
shots_conceded_xG_avg_diff 4
shots_conceded_avg_6
shots_conceded_avg_diff 4
opponent_shots_taken_xG_avg_6 -

shots_conceded_xG_avg

points_avg_6

points_avg_diff 6
opponent_conceded_avg_6
is_home

is_away
team_conceded_avg_6
shots_conceded_xG_avg_6
points_avg

opponent_xPts_avg
shots_taken_xG_avg
xPts_avg_diff_6

xPts_avg_6
shots_conceded_xG_avg_diff_6
team_conceded_avg
points_avg_diff
shots_taken_xG_avg_diff
shots_taken_avg_6

xPts_avg
shots_conceded_avg_diff_6
conceded_avg_diff
opponent_shots_conceded_xG_avg
opponent_shots_taken_avg_6
opponent_shots_conceded_avg
goals_avg_diff_6
opponent_shots_taken_xG_avg
shots_taken_avg_diff_6
opponent_points_avg
opponent_conceded_avg
shots_taken_avg_diff
shots_conceded_avg
opponent_shots_conceded_xG_avg_6

-0.20 -0.15 -0.10 -0.05 0.00 0.0 0.2 0.4 0.6 0.8
Feature Importance (Negative) Feature Importance (Positive)

Figure 3.6: The strength of the positive and negative feature importances (including probabilistic
values) on 'win’ vs 'not win’ classification.

Here, the value of and differences between the rolling average of points scored is by far the
strongest predictive influence for match wins. Whereas, expected points rolling averages hold
approximately 8x less weight in classifying a winning result. This is significant in highlighting a
key issue concerning these probabilistic metrics. Whilst effective at analysing past results, they
do not have the capacity to effectively capture contextual influences on match outcomes. Raw
performances and results can significantly alter a team’s mentality and overall momentum,
which is not quantifiable using probabilistic values. The same can be said for unpredictable
aspects like injuries. These undermine the inherent challenge that makes match prediction a
difficult task. Nonetheless, this is significant in proving that probabilistic metrics are no better
at capturing contextual indicators of future team performance than raw performance metrics,
due to contextual unpredictability. This is not the same case when evaluating previous games,

as this context is indirectly captured and considered within the traditional metrics.
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Discussion

4.1 Conclusions

4.1.1 Key Findings

The project successfully validated the suitability of machine learning models for analytical and
predictive purposes, through exploration of the derived requirements. The initial use of
machine learning models to devise goal predictions was effective. A statistical significance was
found in the positive correlations between these predicted values and goals. Even amongst
purely coordinate based models, expected goal values still provided valuable, albeit minorly
sub-optimal, performance. Following a combination of quantitative and qualitative analysis, it
was decided a logistic regression style of model was the most balanced model for wider
application. This was in part due to its overall smoothness. It also did not overfit to potential
discrepant data values, which may not be present in other datasets, which also a driving factor
behind this. This meant the logistic regression model was more likely applicable to a wider
source of data points. Finally, pursuing this style of model improved overall interpretability,
allowing additional tactical insights to be derived from feature importance interactions. These
highlighted the benefits of patient, build-up based approach play, to optimise chances with
higher goal likelihoods, as well as exploring the benefit of data-informed approaches to set-piece

routines.

The use of Monte Carlo simulation to simulate the results of previous matches and deduce the
number of points expected from a game was hugely effective. The correlations between points
and xPts, as well as actual and expected league position, were overwhelmingly positive, and
statistically significant. The absolute average deviation between a teams expected and actual
finishing position was only 2.44 places. When considering the absolute average deviation
between points and xPts, a similar observation was made, at 6.95 points across a season. This
equates to an error rate of 0.18 — 0.2 xPts per game, dependent on the number of teams in the
league. This highlights the overwhelming effectiveness of using probabilistic models in order to

provide insights on past performances, on both a short and long-term basis.

Despite the effectiveness of these probabilistic inputs in analysing past events, there was a lack
of improvement in predictive models when using probabilistic inputs. This indicates they are
more well suited to past analysis than future predictions. This ultimately boils down to their
inability to capture new information on the wider contextual landscape over existing metrics,
which is challenging to capture full stop. Subsequently, past analytical predictive modelling
approaches are not indicative of future raw or probabilistic performance. This is in part due to
the difficulty to add contextual value with regards to aspects like momentum, morale and team
availability. As such, in order to improve these predictive models, the priority should be on

expanding contextual data capture opportunities.
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4.1.2 Limitations & Implications

It is also important to consider the wider drawbacks of all facets of the software developed. All
other processes were built on top of the expected goals model, and so are reliant on well-tuned
model outputs. Whilst model outputs do provide low error rates on the whole, the limited
feature-space, driven by data availability, means model outputs are not fully optimised.
Additionally, the failure to consider aspects like own goals reduces data availability for the
Monte Carlo simulations, potentially producing some discrepant results. Even though
probabilistic inputs didn’t improve predictive outcome models, their design was also prone to
an impossible predictive outcome, despite improved results over random guessing. Matches
were predicted twice, from the perspective of each team vs their opponent. This meant that,
for a small minority of fixtures, it was predicted that both teams would win or both teams
would lose. Ultimately, engineering a method where each match is predicted once, giving an

outcome for each team, would help to avoid this impossible prediction case, even if infrequent.

Nevertheless, the overall findings of the project underline the effectiveness of using xG as a
performance measure for past match events. This includes on both individual shots, and wider
seasonal performance. Embracing a machine learning based, data-informed approach allows for
a quantitative understanding of performance, for both entire teams and individual players. A
broad scale adoption of these analytical approaches increases explainability in a sport riddled
with unpredictability. In doing so, this provides the groundwork for wide-scale benefits from

data-informed tactical approaches, on a team-by-team, game-by-game basis.

4.2 Ideas for future work

The scope of this project also opens the door for numerous future work opportunities. Having
highlighted the lack of accessibility to xG data in lower divisions, it is worth considering how
models could be opened up to smaller clubs. Development of simple xG plotting software could
be used to allow anybody to track xG for a given match, even down to a grassroots level. This
also lends itself to exploration over the extent to which changes in quality, of both goalkeepers
and finishers, may alter goal probabilities moving down the football pyramid. Moreover,
ongoing developments in data capture technology will extend the feature space of existing
models, enabling further fine-tuning of models. This also presents the opportunity for an
exploration of the benefits of dynamic models dependent on specific players or match states,
which could provide more refined, individualised outputs. Aside of development of xG models
themselves, there is scope to explore other strands of predictive model. Given the growing
demand of the sport, with ever-increasing game frequencies, the development of a predictive
injury model could be used to quantify and balance player workloads. Similar implementation
approaches could also be explored for optimising the scouting processes, which would likely
lend itself to data-driven approaches. Finally, it is also worth considering the role of machine
learning football models on the sports betting market. This would necessitate an exploration of
the tuning capabilities and predictive implementations of machine-learning models in real-time.
This provides an avenue to explore how bookmakers can optimise their odds-provision process
to maximise profits. The sheer range of these future work opportunities highlights the

wide-scale implications of applying machine learning approaches in a footballing context.
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Appendix A

Self-appraisal

A.1 Ciritical self-evaluation

The development of my project allowed for a thorough, hands-on experience with data
analytics and machine learning practices. This covered the development process of a machine
learning model from the initial data gathering and cleansing phases, all the way through to the
evaluation and application of model outputs. This accumulated in the development of a
well-performing expected goals model, with the applicability for analysing previous results
being particularly encouraging. Even though the use of probabilistic inputs was not successful
in improving the capability of predictive models, it ultimately encouraged valuable insights into
why there was a discrepancy in analytical vs predictive power on wider matches. Additionally,
the overarching transparency provided in model feature importances also helps to drive tactical
decision making processes. When used in combination with the outputs of these models, the

opportunity for nuanced, individualised tactical reflection and exploration is overwhelming.

A.2 Personal reflection and lessons learned

The overall development process helped me to hone and develop a number of different skills,

both in and outside of a technical domain.

Embracing the development of an end-to-end project allowed for significant opportunities to
hone my skills with already familiar libraries. This inherently supplemented my development
experience from modules such as Info Vis, Data Science and Machine Learning, which also
made use of libraries including matplotlib, pandas and scikit-learn. Lots of my code
development took a trial-and-error approach to exploring how these libraries best fitted
together. Upon reflection, whilst this was effective in giving me hands-on experience, the
literature review for these libraries should’ve been conducted before any stages of code
development. This would’ve allowed for a more nuanced understanding of library
interoperability and overall capabilities, improving the efficiency of project development.
Nevertheless, the experience from this built upon my wider approach to project management.
This ultimately ensured a more structured approach towards the end of the programming

lifecycle, and during the report writing phase of the project.

Also with regards to project management, the use of GitHub was essential in managing the
code-development process. Numerous occasions arose where experimentation had broken
sections of code, or rendered them no longer useful. The frequency and relevance of commits
provided a solid foundation for reversion to a sound project implementation from unstable
experimental processes. Additionally, using GitHub for version management allowed for
cross-platform development, enabling me to work from both my Desktop PC and Laptop, and
keep up to date with code-base edits on the other device. As such, understanding how to use

GitHub effectively was key for me in managing the software development cycle, and in
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providing confidence for exploratory development. This has since standardised my use of

GitHub, for personal projects and even small coursework pieces.

As referenced through the exploratory approach, development of the project did come with its
challenges. Hyperparameter tuning initially focused on error metrics between the shot
classification and actual classification, which failed to ultimately evaluate the error between the
actual model output, being the predicted value. This then necessitated the use of a custom
hyperparameter tuning function. Implementation for this went relatively smoothly, but was
incredibly computationally expensive. Subsequently, this led me to explore the use of parallel
frameworks to speed up computation time. Whilst challenging, with a steep learning curve, this
was a hugely effective way of getting to grips with parallel methodologies. Doing so made clear
the opportunities for performance benefit through the consideration of parallel programming
techniques. Additionally, investigation into the discrepancies between the random forest and
logistic regression xG heatmaps was a tough, time-consuming process. This required manual
evaluation of specific shot points, player positions and scenarios to identify why the models
were behaving in slightly different ways, in spite of the hyperparameter tuning. Whilst a
frustrating process, it did underline the importance of ensuring a full and comprehensive

understanding of the data, as well as the quality of the data source.

While all of these aspects of the project were significant in developing my project management
and programming skills, this report-writing process was perhaps where the most value came.
Understanding how to fully formulate the development process into well-structured, logical
report was difficult. On reflection, a greater proportion of the report-writing process should’ve
been done in tandem with code development. This would have provided a stronger foundation
to develop code upon, and enabled the tuning of written sections whilst the code

implementation was still fresh and familiar from development.

Ultimately, the opportunity to apply my degree to sports analytics, a field I am greatly
passionate about, has been invaluable. Despite highs and lows in project development, pursing
something I am specifically engaged in has kept me eager to continue work on the project. This
has included taking foundational steps to explore some of the ideas laid out in the 'Ideas for
Future Work’, with plans to fully build-upon this in the summer. The learning process of this
project has not only been invaluable from a programming perspective, but also in

understanding how to effectively plan and manage a large-scale project.

A.3 Legal, social, ethical and professional issues

A.3.1 Legal issues

Given the use of data, it is was important for me to consider the regulations laid out by
legislation such as the data protection act. The data used in this project is widely-used and
openly available, meaning the project ultimately had no concerns relating to the use of

personal data.
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A.3.2 Social issues

Given the discussion for the wide-ranging possibilities for these machine learning approaches, it
is important to understand the way in which they are applied. Models used in evaluating
player performance, or scouting players for a club, can have a significant impact on people’s
lives, namely the employment of the players. As such, it is imperative that the models
developed are evaluated for overall fairness, ensuring no exacerbation of underlying biases are
present in model outputs. This is an underlying consideration for references to model

transparency throughout the project.

Additionally, the references to potential use-cases in the sports-betting industry raises another
key social issue. Gambling addiction is not uncommon, and the financial consequences can be
devastating and ruin livelihoods. It is absolutely essential to understand that predictive model
outputs are just that, they are predictions. If they were to be used in a gambling context, they
should only be used as additional context to facilitate responsible betting practices. The
predictive models are based purely on historical data, and provide no certainty over the
occurrence of future events. As predictive models like the ones developed in this project
continue to become more mainstream, it is essential they are supplemented with the awareness

and education related to the continued risks of gambling.

A.3.3 Ethical issues

The social issues described around gambling are also relevant here. It is important to raise
awareness in the uncertainty around model outputs, as a result of the inherent unpredictability

of the sport.

Aside from this, data was collected using web scraping techniques from Understat.com. Whilst
this was not forbidden, it was imperative to respect the site’s server load during the heavy data
retrieval process. As such, this retrieval process used rate limiting to restrict the frequency at
which requests were made to the site. This helped ensure the data retrieval process did not

contribute to destabilisation the site’s servers.

Additionally, it’s important to maintain transparency about the development process of these
models. The project is clear in outlining the different datasets and their features used
throughout implementation, such that if somebody were to adopt the model, they could

comprehensively understand the process behind the model outputs.

A.3.4 Professional issues

As a machine learning/data science focused problem, it was essential to undergo full data
exploration, cleansing and preprocessing steps. This ensured confidence in the data the models
were built upon, enabling honest development of the best performing model possible. The
capability of using model feature importances for tactical insights was also relevant here, as it
further supported the interpretability of models and their decision making process. Finally, the
application of contextually relevant evaluation metrics ensured that the models produced were
to the highest possible standard. In doing so, this makes clear that the models were in no way

designed to mislead, but rather to act as a support mechanism for conducting football analysis.



Appendix B

External Material

The data used was sourced from Understat.com [36]: https://understat.com/

The process used to retrieve data from the site was inspired based on a public GitHub
repository, from user douglasbc [6]:
https://github.com/douglasbc/scraping-understat-dataset
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